シラバス参照

授業情報/Class Information

科目一覧へ戻る 2023/09/27 現在

基本情報/Basic Information

開講科目名
/Course
生物情報学講義
時間割コード
/Course Code
M239000289
ナンバリングコード
/Numbering Code
開講所属
/Course Offered by
医学研究科/
曜日コマ
/Day, Period
開講区分
/Semester offered
通年
単位数
/Credits
4.0
学年
/Year
1
主担当教員
/Main Instructor
玉田 嘉紀/TAMADA YOSHINORI
科目区分
/Course Group
大学院(博士課程) 
教室
/Classroom
必修・選択
/Required/Elective
授業形式
/Class Format
メディア授業
/Media lecture

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Faculty/Department
玉田 嘉紀/TAMADA YOSHINORI 医学研究科/
難易度(レベル)
/Level
レベル5
対応するDP
/DP
DP2
授業としての具体的到達目標
/Concrete arrival target as the class
本講義では現在の生物情報学分野の研究を俯瞰し、必要な情報科学、計算科学、統計科学の基礎知識を習得する。またプログラミングの基礎的な知識も獲得する。
授業の概要
/Summary of the class
生物情報学は情報科学、計算機科学、統計科学などの情報学全般を駆使して生物学的な問題を解決しようとする学問分野である。本講義では現在の生物情報学を俯瞰し、必要な情報科学、計算科学、統計科学、機械学習を学ぶ。またプログラミングを習得するために Python および R を用いたプログラミングの座学を行う。専門的な内容としてグラフィカルモデルを紹介し、生物情報学分野の代表的課題である発現データ解析およびゲノムデータ解析について概要を紹介する。
授業の内容予定
/Contents plan of the class
<前期>
第1回 生物情報学概論
第2回 計算機科学概論(1)
第3回 計算機科学概論(2)
第4回 計算機科学概論(3)
第5回 情報科学概論(1)
第6回 情報科学概論(2)
第7回 情報科学概論(3)
第8回 統計解析概論(1)
第9回 統計解析概論(2)
第10回 統計解析概論(3)
第11回 機械学習概論(1)
第12回 機械学習概論(2)
第13回 機械学習概論(3)
第14回 Python プログラミング(1)
第15回 Python プログラミング(2)
<後期>
第16回 Python プログラミング(3)
第17回 Python プログラミング(4)
第18回 Python プログラミング(5)
第19回 Python プログラミング(6)
第20回 Python プログラミング(7)
第21回 R プログラミング(1)
第22回 R プログラミング(2)
第23回 R プログラミング(3)
第24回 R プログラミング(4)
第25回 R プログラミング(5)
第26回 グラフィカルモデル(1)
第27回 グラフィカルモデル(2)
第28回 グラフィカルモデル(3)
第29回 発現データ解析
第30回 ゲノムデータ解析
成績評価方法及び採点基準
/A scholastic evaluation method and marking standard
授業への参加度(60点)および口頭試問(40点)により評価する。
予習及び復習等の内容
/Contents such as preparations for lessons and the review
各回の講義項目に対し参考書などを用いて予習し、授業実施後に復習を行うこと。
教材・教科書
/The teaching materials, textbook
特に指定しない。
参考文献
/bibliography
参考文献:
ヘネシー&パターソン コンピュータアーキテクチャ、翔泳社
T. コルメン、C. ライザーソン、R. リベスト アルゴリズムイントロダクション第1〜3巻、近代科学社
八谷大岳 ゼロからつくるPython機械学習プログラミング入門、講談社
金明哲 Rによるデータサイエンス、森北出版
鈴木譲・植野真臣 編 確率的グラフィカルモデル、共立出版
留意点・予備知識
/Point to keep in mind, back ground
特になし
授業内容に関する質問・疑義等
/Question, doubt about class contents
金曜日17時~19時(要事前予約)
Eメールアドレス・HPアドレス
/E-mail address, HP address
玉田嘉紀( y.tamada@hirosaki-u.ac.jp )
https://ytlab.jp/mdi/
学問分野1(主学問分野)
/Discipline 1
J62:応用情報学およびその関連分野
学問分野2(副学問分野)
/Discipline 2
J60:情報科学、情報工学およびその関連分野
学問分野3(副学問分野)
/Discipline 3
J61:人間情報学およびその関連分野
地域志向科目
/Local intention subject
なし
授業形態・授業方法
/Class form, class method
ゼミナール方式で、配布資料やスライドプレゼンテーション、あるいはテキストを使って講義をする。
科目ナンバー
/The subject number
メディア授業による著作物利用の有無について
/Whether or not copyrighted works are used in media classes
無/Nothing
その他
/Others
No. 回(日時)
/Time (date and time)
主題と位置付け(担当)
/Subjects and instructor's position
学習方法と内容
/Methods and contents
備考
/Notes
該当するデータはありません

科目一覧へ戻る