シラバス参照

授業情報/Class Information

科目一覧へ戻る 2024/09/20 現在

基本情報/Basic Information

開講科目名
/Course
医療データ解析学講義(先制医療学)
時間割コード
/Course Code
M242000407
ナンバリングコード
/Numbering Code
開講所属
/Course Offered by
医学研究科/
曜日コマ
/Day, Period
開講区分
/Semester offered
後期/second semester
単位数
/Credits
2.0
学年
/Year
1,2,3
主担当教員
/Main Instructor
三上 達也
科目区分
/Course Group
大学院(博士課程) 
教室
/Classroom
必修・選択
/Required/Elective
授業形式
/Class Format
講義科目
メディア授業
/Media lecture

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Faculty/Department
三上 達也 医学研究科/
難易度(レベル)
/Level
レベル5
対応するDP
/DP
DP2
授業としての具体的到達目標
/Concrete arrival target as the class
情報科学及び人工知能技術を用いて医療ビッグデータを解析するための計算機科学、情報科学、機械学習やプログラミングなどの基礎的な知識を身につけ、医学データ解析上の問題解決のための理論を習得。
授業の概要
/Summary of the class
医療データ解析に必要となる計算機科学(主にコンピュータアーキテクチャなどのハードウェア知識)、情報科学(計算量理論や論理演算、データ表現、アルゴリズムやデータベースなど)の基礎的な知識を踏まえた上で、統計解析及び機械学習の基本的な概念・モデル・解析手法を学ぶ。その後、Python と R を用いてプログラミングの座学的知識に触れる。その後、高度な多変量解析手法であるグラフィカルモデルについて3回に分けて解説する。残りの5回で実際の医療データ解析に触れる。
授業の内容予定
/Contents plan of the class
<前期>
第1回 計算機科学概論(1)
第2回 計算機科学概論(2)
第3回 計算機科学概論(3)
第4回 情報科学概論(1)
第5回 情報科学概論(2)
第6回 情報科学概論(3)
第7回 統計解析概論(1)
第8回 統計解析概論(2)
第9回 統計解析概論(3)
第10回 機械学習概論(1)
第11回 機械学習概論(2)
第12回 機械学習概論(3)
第13回 Python プログラミング(1)
第14回 Python プログラミング(2)
第15回 Python プログラミング(3)
<後期>
第16回 Python プログラミング(4)
第17回 Python プログラミング(5)
第18回 R プログラミング(1)
第19回 R プログラミング(2)
第20回 R プログラミング(3)
第21回 R プログラミング(4)
第22回 R プログラミング(5)
第23回 グラフィカルモデル(1)
第24回 グラフィカルモデル(2)
第25回 グラフィカルモデル(3)
第26回 医療データ解析 (1)
第27回 医療データ解析 (2)
第28回 医療データ解析 (3)
第29回 医療データ解析 (4)
第30回 医療データ解析 (5)
成績評価方法及び採点基準
/A scholastic evaluation method and marking standard
授業への参加度(60点)および口頭試問(40点)により評価する。
予習及び復習等の内容
/Contents such as preparations for lessons and the review
各回の講義項目に対し参考書などを用いて予習し、授業実施後に復習を行うこと。
教材・教科書
/The teaching materials, textbook
特に指定しない。
参考文献
/bibliography
参考文献:
ヘネシー&パターソン コンピュータアーキテクチャ、翔泳社
T. コルメン、C. ライザーソン、R. リベスト アルゴリズムイントロダクション第1?3巻、近代科学社
八谷大岳 ゼロからつくるPython機械学習プログラミング入門、講談社
金明哲 Rによるデータサイエンス、森北出版
鈴木譲・植野真臣 編 確率的グラフィカルモデル、共立出版
留意点・予備知識
/Point to keep in mind, back ground
特になし
授業内容に関する質問・疑義等
/Question, doubt about class contents
金曜日17時~19時(要事前予約)
Eメールアドレス・HPアドレス
/E-mail address, HP address
玉田嘉紀( y.tamada@hirosaki-u.ac.jp )
https://ytlab.jp/mdi/
学問分野1(主学問分野)
/Discipline 1
J62:応用情報学およびその関連分野
学問分野2(副学問分野)
/Discipline 2
J60:情報科学、情報工学およびその関連分野
学問分野3(副学問分野)
/Discipline 3
J61:人間情報学およびその関連分野
地域志向科目
/Local intention subject
なし
授業形態・授業方法
/Class form, class method
ゼミナール方式で、配布資料やスライドプレゼンテーション、あるいはテキストを使って講義をする。
科目ナンバー
/The subject number
0
メディア授業による著作物利用の有無について
/Whether or not copyrighted works are used in media classes
無/Nothing
その他
/Others
0
No. 回(日時)
/Time (date and time)
主題と位置付け(担当)
/Subjects and instructor's position
学習方法と内容
/Methods and contents
備考
/Notes
該当するデータはありません

科目一覧へ戻る